
Numerical Optimization and the

Toolkit for Advanced Optimization

Jason Sarich, Todd Munson, Stefan Wild

Mathematics and Computer Science Division,

Argonne National Laboratory

August 15, 2012

Jason Sarich Toolkit for Advanced Optimization

ACTS Workshop 2012

Part I

Nonlinear Optimization

Jason Sarich Toolkit for Advanced Optimization

ACTS Workshop 2012

Nonlinear Optimization

• Unconstrained Optimization

• Bound-constrained Optimization

• General Constrained Optimization

Jason Sarich Toolkit for Advanced Optimization

ACTS Workshop 2012

Nonlinear Optimization

Unconstrained Optimization Problem

f : R
N 7→ R

min
x∈RN

f(x)

Jason Sarich Toolkit for Advanced Optimization

ACTS Workshop 2012

Nonlinear Optimization

Bound-constrained Optimization Problem

min f(x) (objective function)

subject to xl ≤ x ≤ xu (bounds)

Jason Sarich Toolkit for Advanced Optimization

ACTS Workshop 2012

Nonlinear Optimization

Constrained Optimization Problem

min f(x) (objective function)

subject to cl ≤ c(x) ≤ cu (constraints)

Note: TAO is not able to solve constrained optimization problems
directly.

Jason Sarich Toolkit for Advanced Optimization

Part II

Algorithms

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Nonlinear optimization algorithms are iterative processes. In many cases,
each iteration involve calculating a search direction, then function values
and gradients along that direction are calculated until certain conditions
are met.

• Newton’s Method

• Quasi-Newton Methods

• Conjugate Gradient

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Newton’s Method

• Step 0 Choose initial vector x0

• Step 1 Compute gradient ∇f(xk) and Hessian ∇2f(xk)

• Step 2 Calculate the direction dk+1 by solving the system:

∇2f(xk)dk+1 = −∇f(xk)

• Step 3 Apply line search algorithm to obtain “acceptable” new
vector:

xk+1 = xk + τdk+1

• Return to Step 1

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Problems with Newton’s Method

• Hessian must be derived, computed, and stored

• Linear solve must be performed on Hessian

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Quasi-Newton Methods
Use approximate Hessian Bk ≈ ∇2f(xk). Choose a formula for Bk so

that:

• Bk relies on first derivative information only

• Bk can be easily stored

• Bkdk+1 = −∇f(xk) can be easily solved

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Conjugate Gradient Algorithms

These algorithms are an extension of the conjugate gradient methods for
solving linear systems.

dk+1 = −∇f(xk) + βkdk

Some possible choices of βk (gk = ∇f(xk)):

βFR
k =

(

‖gk+1‖

‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉

‖gk‖2
, Polak-Ribière

βPR+

k = max
{

βPR
k , 0

}

, PR-plus

Jason Sarich Toolkit for Advanced Optimization

Algorithms

Derivate Free Algorithms

There are some applications for which it is not feasible to find the
derivative of the objective function. There are some algorithms available
that can solve these applications, but they can be very slow to converge.

• Pattern Searches

• Nelder-Mead Simplex

• Model-based methods

• Use finite differences

Jason Sarich Toolkit for Advanced Optimization

Part III

TAO

The process of nature by which all things change and which is to be
followed for a life of harmony

Jason Sarich Toolkit for Advanced Optimization

TAO

What does TAO do for you?

• Contains a library of optimization solvers for solving unconstrained,
bound-constrained, and complementarity optimization problems.
These solvers include Newton methods, Quasi-Newton methods,
conjugate gradients, derivative free, and semi-smooth methods.

• Provides C, C++, and Fortran interfaces to these libraries

• Allows for large scale, sparse objects, and parallel applications

• Uses PETSc data structures and utilities

Jason Sarich Toolkit for Advanced Optimization

TAO Solvers

handles bounds requires gradient requires Hessian

lmvm no yes no
nls no yes yes
ntr no yes yes
ntl no yes yes
cg no yes no
nm no no no

blmvm yes yes no
tron yes yes yes
gpcg yes yes no

pounders yes no no

Jason Sarich Toolkit for Advanced Optimization

TAO

Pressure in a Journal Bearing

min

{
∫

D

{

1

2
wq(x)‖∇v(x)‖2 − wl(x)v(x)

}

dx : v ≥ 0

}

wq(ξ1, ξ2) = (1 + ǫ cos ξ1)
3

wl(ξ1, ξ2) = ǫ sin ξ1
D = (0, 2π)× (0, 2b)

Number of active constraints depends on the choice of ǫ in (0, 1).
Nearly degenerate problem. Solution v /∈ C2.

Jason Sarich Toolkit for Advanced Optimization

TAO

Minimal Surface with Obstacles

min

{
∫

D

√

1 + ‖∇v(x)‖2 dx : v ≥ vL

}

Number of active constraints depends on the height of the obstacle. The
solution v /∈ C1. Almost all multipliers are zero.

Jason Sarich Toolkit for Advanced Optimization

TAO

Parallel Performance

Processors BLMVM Execution Percentage of Time
Used Iterations Time AXPY Dot FG
8 996 1083.8 31 9 60
16 991 538.2 30 10 60
32 966 267.7 29 11 60
64 993 139.5 27 13 60
128 987 72.4 25 15 60
256 996 39.2 26 18 56
512 1000 21.6 23 22 53

Table: Scalability of BLMVM on Obstacle Problem with 2,560,000 variables.

Jason Sarich Toolkit for Advanced Optimization

Mesh Sequencing

Mesh niters Time (s)

71 × 71 6 0.58
141 × 141 8 1.45
281 × 281 10 2.85
561 × 561 21 9.34
1121 × 1121 † †
2241 × 2241 † †
4481 × 4481 † †

Performance results without mesh sequencing on 140 nodes. The symbol † is used if there is no convergence after 100

iterations.

The results in the table show that the number of iterations grows as the mesh is refined but

that for the finest meshes we terminate Newton’s method after niters = 100 iterations.

Although Newton’s method is mesh invariant, the starting point is assumed to be in the region

of quadratic convergence. A more careful analysis of these results, however, shows that the

starting point is not in the region of quadratic convergence for any of the grids.

Jason Sarich Toolkit for Advanced Optimization

Mesh Sequencing

We now consider the use of mesh sequencing. We start with a mesh with
71× 71 grid points and, at each stage, use linear interpolation on the
coarse mesh solution to obtain the starting point for the fine mesh. Thus,
an nx × ny coarse mesh becomes a fine (2nx − 1)× (2ny − 1) mesh. We
use the same termination condition at each level of refinement.

Jason Sarich Toolkit for Advanced Optimization

Mesh Sequencing

Mesh niters Time (s)

71 × 71 6 0.58
141 × 141 3 0.44
281 × 281 2 0.52
561 × 561 2 1.31
1121 × 1121 2 5.51
2241 × 2241 2 19.5
4481 × 4481 2 189

Performance results with mesh sequencing on 140 nodes.

The results in this table show the performance of the TRON solver on each mesh. After the

solution is obtained on the coarsest mesh, the number of iterations per mesh is either two or

three. This is the desired behavior for mesh sequencing. Because the number of Krylov

iterations increases on finer meshes, solution times per level grow at a faster than linear rate.

Better preconditioners may further improve performace.

Jason Sarich Toolkit for Advanced Optimization

POUNDER - Model-based Derivate-free optimization

n = 2, |Y k| = 4

using an interpolating quadratic,

qk(xk + yi) = f(xk + yi), ∀yi ∈ Yk.

→ Function values are all you have

• Other models possible

• Only provide local approximation

• Coarse models ↔ smooth noise

Jason Sarich Toolkit for Advanced Optimization

POUNDERS - Nonlinear Least Squares

f(x) = 1

2

p
∑

i=1

(Si(x)− di)
2

• Obtain a vector of output S1(x), . . . , Sp(x) with each simulation

• Approximate:

∇f(x) =
∑

i
∇Si(x)(Si(x)− di)

→
∑

i
∇mi(x)(Si(x)− di)

∇
2
f(x) =

∑
i
∇Si(x)∇Si(x)

T +
∑

i
(Si(x)− di)∇

2
Si(x)

→
∑

i
∇mi(x)∇mi(x)

T +
∑

i
(Si(x)− di)∇

2
mi(x)

• Model f via Gauss-Newton or similar

Jason Sarich Toolkit for Advanced Optimization

POUNDERS for hfbtho

50 150 250
0

5

10

15

20

Day 1 Day 2 Day 3

Number of 12min. Evaluations

Le
as

t f
 V

al
ue

nelder−mead
pounders

◦ 72 cores on Jazz

◦ 12 wall-clock minutes per
f(x)

• POUNDERS: acceptable
x in 3.2 hours

• Nelder-Mead: no
acceptable x in 60 hours

Jason Sarich Toolkit for Advanced Optimization

TAO

What TAO doesn’t do

• Application Modeling

• Derivatives

• Linear programming

• Constrained optimization

• Integer programming

• Global minimization

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Using TAO

There are two parts to solving an optimization application with TAO:

• Routines to evaluate an objective function, define constraints on the
variables, and provide derivative information.

• A driver program (main) that creates a TAO solver with desired
algorithmic options and tolerances and sets up user evaluation
routines.

TAO uses Matrix, Vector, and KSP objects from PETSc.

Jason Sarich Toolkit for Advanced Optimization

TAO Application

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

What do you need to do for the User Routines?

You need to write C, C++, or Fortran functions that:

• Set the initial variable vector (optional)

• Compute the objective function value at a given vector

• Compute the gradient at a given vector

• Compute the Hessian matrix at a given vector (for Newton methods)

• Set the variable bounds (for bounded optimization)

Jason Sarich Toolkit for Advanced Optimization

TAO Examples

TAO has some example applications (in C and Fortran) included in the
source distribution for you to test the TAO installation, learn about TAO
features, and reference for creating your own applications

unconstrained bound least-squares

eptorsion1.c jbearing2.c chwirut1.c
eptorsion2.c plate2.c chwirut2.c
eptorsion2f.F plate2f.F chwirut1f.F
minsurf1.c chwirut2f.F
minsurf2.c
rosenbrock1.c
rosenbrock1f.F

Jason Sarich Toolkit for Advanced Optimization

TAO Applications
Create a data structure that contains any state information, such as
parameter values or data viewers, that the evaluation routines will need.
For example:

typedef struct {

PetscReal epsilon; /* application parameter */

PetscInt n; /* Size of problem */

PetscInt rank;

PetscInt size;

} UserContext;

The objective function evaluation routine should look like:

PetscErrorCode MyFunction(TaoSolver tao, Vec x,

PetscReal *fcnval, void *userCtx){

UserContext *user = (UserContext *)userCtx;

...

}

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

The routines for computing the gradient and Hessians look similar:

PetscErrorCode MyGradient(TaoSolver tao, Vec x, Vec g,

void *userCtx){

UserContext *user = (UserContext *)userCtx;

...

}

PetscErrorCode MyHessian(TaoSolver tao, Vec x, Mat *H,

Mat *Hpre, MatStructure *flag, void *userCtx){

UserContext *user = (UserContext *)userCtx;

...

}

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Writing the Driver

A driver program is used to hook up the user’s application to the TAO
library. This driver performs the following steps:

• Create the TAO Solver

• Create the variable vector and Hessian matrix

• Hook up the user evaluation routines to the TAO solver

• Solve the application

• Analyze the solution

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Create the TAO Solver

TaoSolver tao; /* TAO Optimization solver */

UserContext user; /* user-defined structure */

Vec x; /* solution vector */

Mat H; /* Hessian Matrix */

PetscInitizialize(&argc,&argv,0,0);

TaoInitialize(&argc,&argv,0,0);

TaoCreate(PETSC_COMM_SELF,&tao);

TaoSetType(tao,"tao_lmvm");

...

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Create storage for the solution vector and Hessian matrix

TaoSolver tao; /* TAO Optimization solver */

UserContext user;/* user-defined structure */

Vec x; /* solution vector */

Mat H; /* Hessian Matrix */

...

VecCreateSeq(PETSC_COMM_SELF,n,&x);

MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);

...

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Hook up the application to TAO

TaoSolver tao; /* TAO Optimization solver */

UserContext user; /* user-defined structure */

Vec x; /* solution vector */

Mat H; /* Hessian Matrix */

...

user.epsilon = 0.1;

TaoSetInitialVector(tao,x);

TaoSetObjectiveRoutine(tao,MyFunction,(void *)&user);

TaoGradientRoutine(tao,MyGradient,(void *)&user);

TaoSetHessianRoutine(tao,H,H,MyHessian,(void *)&user);

...

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Solve the application

TaoSolver tao; /* TAO Optimization solver */

UserContext user; /* user-defined structure */

Vec x; /* solution vector */

Mat H; /* Hessian Matrix */

...

TaoSetFromOptions(tao);

TaoSolve(tao);

VecView(x,PETSC_VIEWER_STDOUT_SELF);

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Solve a multiple processor application

The most important and difficult part of solving a multiple processor
application is writing the function, gradient, and Hessian evaluation
routines to run in parallel.
Once that is done, it is trivial to get TAO to run in parallel:

...

TaoCreate(PETSC_COMM_WORLD,&tao);

VecCreateMPI(PETSC_COMM_WORLD,n,&x);

MatCreateMPIAIJ(PETSC_COMM_WORLD,n,n,nz,PETSC_NULL,&H);

...

Jason Sarich Toolkit for Advanced Optimization

Toolkit for Advanced Optimization

• You can download TAO 2.1 from the webpage
http://www.mcs.anl.gov/tao

• The documention online includes installation instructions, a user’s
manual and a man page for every TAO function.

• The download includes several examples for using TAO in C and
Fortran. We will use some of these examples in the tutorial.

Jason Sarich Toolkit for Advanced Optimization

http://www.mcs.anl.gov/tao

	Nonlinear Optimization
	ACTS Workshop 2012

	Algorithms
	TAO

